Math 600 Day 11: Multilinear Algebra

Ryan Blair

University of Pennsylvania

Tuesday October 19, 2010

Outline

(1) Multilinear Algebra

Multilinear Algebra

$V=$ vector space (typically finite dim'l) over \mathbb{R}
$V^{k}=$ k-fold product $V \times \ldots \times V$
A function $T: V^{k} \rightarrow \mathbb{R}$ is said to be multilinear if it is linear in each variable when the other $k-1$ variables are held fixed. Such a multilinear function T is called a k-tensor on V.

Example. An inner product on V is a 2-tensor which is symmetric and positive definite.
$\mathcal{T}^{k}(V)=$ set of all k-tensors on V, is a vector space over \mathbb{R} in the natural way.

Note that $\mathcal{T}^{1}(V)$ is just the dual space V^{*}.

If $S \epsilon \mathcal{T}^{k}(V)$ and $T \epsilon \mathcal{T}^{r}(V)$, we define a tensor product $S \otimes T \epsilon T^{k+r}(V)$ by

$$
(S \otimes T)\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+r}\right)=S\left(v_{1}, \ldots, v_{k}\right) T\left(v_{k+1}, \ldots, v_{k+r}\right)
$$

Note that $S \otimes T \neq T \otimes S$.

Tensor Equalities.

$$
\begin{gathered}
\left(S_{1}+S_{2}\right) \otimes T=\left(S_{1} \otimes T\right)+\left(S_{2} \otimes T\right) \\
S \otimes\left(T_{1}+T_{2}\right)=\left(S \otimes T_{1}\right)+\left(S \otimes T_{2}\right) \\
(a S) \otimes T=S \otimes(a T)=a(S \otimes T) \\
(S \otimes T) \otimes U=S \otimes(T \otimes U) .
\end{gathered}
$$

Exercise. Let v_{1}, \ldots, v_{n} be a basis for V, and let $\varphi_{1}, \ldots, \varphi_{n}$ be the dual basis for $V^{*}=T^{1}(V)$, meaning that $\varphi_{i}\left(v_{j}\right)=\delta_{i j}$. Show that the set of all k-fold tensor products

$$
\varphi_{i_{1}} \otimes \ldots \otimes \varphi_{i_{k}}, 1 \leq i_{1}, \ldots, i_{k} \leq n
$$

is a basis for $\mathcal{T}^{k}(V)$, which therefore has dimension n^{k}.

Definition

If $f: V \rightarrow W$ is a linear map, then a linear map $f^{*}: T^{k}(W) \rightarrow T^{k}(V)$ is defined by

$$
(f * T)\left(v_{1}, \ldots, v_{k}\right)=T\left(f\left(v_{1}\right), \ldots, f\left(v_{k}\right)\right)
$$

When $k=1$, this is just the familiar transpose or adjoint of a linear map.
Note that $f^{*}(S \otimes T)=f^{*} S \otimes f^{*} T$.

Definition

A k-tensor $\omega \epsilon \mathcal{T}^{k}(V)$ is alternating if

$$
\omega\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)=-\omega\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right)
$$

for all $v_{1}, \ldots, v_{k} \epsilon V$. That is, ω changes sign when exactly two of its variables are interchanged.

An alternating k-tensor is called a \mathbf{k}-form.
The set of k-forms is denoted by $\Lambda^{k}(V)$, and is a subspace of $T^{k}(V)$.

Any k-tensor can be turned into a k-form:

$$
\operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right)=\operatorname{defn}\left(\frac{1}{k!}\right) \Sigma_{\sigma \epsilon S_{k}}(-1)^{\sigma} T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right),
$$

where S_{k} is the symmetric group of all permutations of the numbers 1 to k and $(-1)^{\sigma}$ is the sign of the permutation σ.

Exercise. Show that $A l t(T)$ really is alternating.
Other Facts
(a) If T is already alternating, $\operatorname{Alt}(T)=T$.
(b) $\operatorname{Alt}(\operatorname{Alt}(T))=A l t(T)$.

Definition

If $\omega \epsilon \Lambda^{k}(V)$ and $\eta \epsilon \Lambda^{r}(V)$, the wedge product $\omega \wedge \eta \epsilon \Lambda^{k+r}(V)$ is defined by

$$
\omega \wedge \eta=\frac{(k+r)!}{k!r!} A l t(\omega \otimes \eta) .
$$

For example, if φ_{1} and φ_{2} are 1-forms, we have

$$
\left(\varphi_{1} \wedge \varphi_{2}\right)\left(v_{1}, v_{2}\right)=\varphi_{1}\left(v_{1}\right) \varphi_{2}\left(v_{2}\right)-\varphi_{1}\left(v_{2}\right) \varphi_{2}\left(v_{1}\right) .
$$

Note that for a 1-form φ we have $\varphi \wedge \varphi=0$.

Exercise. Let ω be a k-form and η an r-form. Show that

$$
\begin{gathered}
(\omega \wedge \eta)\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+r}\right) \\
=\Sigma_{\sigma \epsilon S^{\prime}}(-1)^{\sigma} \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \eta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+r)}\right)
\end{gathered}
$$

where S^{\prime} is the subset of the symmetric group S_{k+r} consisting of all permutations σ such that

$$
\sigma(1)<\ldots<\sigma(k) \text { and } \sigma(k+1)<\ldots<\sigma(k+r) .
$$

Properties of the wedge product:

(1) $\left(\omega_{1}+\omega_{2}\right) \wedge \eta=\omega_{1} \wedge \eta+\omega_{2} \wedge \eta$
(2) $\omega \wedge\left(\eta_{1}+\eta_{2}\right)=\omega \wedge \eta_{1}+\omega \wedge \eta_{2}$
(3) $(a \omega) \wedge \eta=\omega \wedge(a \eta)=a(\omega \wedge \eta)$
(3) $\omega \wedge \eta=(-1)^{k r} \eta \wedge \omega$
(5) $f^{*}(\omega \wedge \eta)=f^{*}(\omega) \wedge f^{*}(\eta)$.

Problem. Show that

$$
(\omega \wedge \eta) \wedge \theta=\omega \wedge(\eta \wedge \theta)=\frac{(k+r+s)!}{k!r!s!} A l t(\omega \otimes \eta \otimes \theta)
$$

where $\omega \epsilon \Lambda^{k}(V), \eta \epsilon \Lambda^{r}(V)$ and $\theta \epsilon \Lambda^{s}(V)$.
This is harder.
So now we can drop the parentheses, and simply write $\omega \wedge \eta \wedge \theta$, and likewise for higher order products.

Exercise. Let v_{1}, \ldots, v_{n} be a basis for V, and let $\varphi_{1}, \ldots, \varphi_{n}$ be the dual basis for $V^{*}=\mathcal{T}^{1}(V)$. Show that the set of all

$$
\varphi_{i 1} \wedge \ldots \wedge \varphi_{i k}, \text { with } 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n
$$

is a basis for $\Lambda^{k}(V)$, which therefore has dimension

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Show, in fact, that $\left(\varphi_{i_{1}} \wedge \ldots \wedge \varphi_{i_{k}}\right)\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)=1$.
Note in particular that $\Lambda^{n}(V)$ is one-dimensional.

